Feature Extraction for Gear Failure Detection Based on Nonlinear Mapping

نویسندگان

  • Guanglan Liao
  • Tielin Shi
  • Lei Nie
چکیده

A general-purpose useful parameter in data analysis is the intrinsic dimension of a data set, corresponding to the minimum number of variables necessary to describe the data without significant loss of information. Feature extraction, including linear or nonlinear mapping technique, is efficient to estimate the intrinsic dimension of the data set, which is a key issue to machine fault diagnosis. This paper presents a novel application of feature extraction using the nonlinear mapping technique called curvilinear component analysis (CCA) for gear failure detection. In the approach high-dimensional data are nonlinearly projected toward an output space with dimension equal to the intrinsic dimension. Hence, enough information is remained to describe correctly the original data structure, and feature extraction based on CCA reduces dimensionality of the raw feature space for machine failure detection. Gearbox vibration signals measured under different operating conditions are analyzed using the technique. The results indicate that the intrinsic dimension of the data set is estimated and a 2-D subspace is extracted by the CCA technique, then the high-dimensional original feature data are projected into the 2-D space and form several clustering regions, each indicative of a specific gear condition, respectively. Thus, the gear operating conditions including normal, one cracked tooth, and one broken tooth are classified and detected clearly. It confirms that feature extraction based on the nonlinear mapping is very useful and effective for pattern recognition in mechanical fault diagnosis, and provides a good potential for applications in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance

Characterized by small size, light weight and large transmission ratio, planetary gear transmission is widely used in large scale complex mechanical system with low speed and heavy duty. However, due to the influences of operating condition, manufacturing error, assembly error and multi-tooth meshing, the vibration signal of planetary gear exhibits the characteristics of nonlinear and non-stati...

متن کامل

A New FeAture extrActioN Method For GeAr FAult diAGNosis ANd ProGNosis NowA MetodA diAGNozowANiA i ProGNozowANiA uszkodzeń PrzekłAdNi z wykorzystANieM ekstrAkcji cech

Robust features are very critical to track the degradation process of a gear. They are key factors for implementing fault diagnosis and prognosis. This has driven the need in research for extracting good features. This paper used a new method, Narrowband Interference Cancellation, to suppress the narrow band component and enhance the impulsive component enabling the gear fault detection easier....

متن کامل

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

Comparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP

‎There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems‎. ‎This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems‎. ‎The techniques are based on Power Spectrum Density Analysis (PSDA)‎, ‎Fast Fourier Transform (FFT)‎, ‎Hilbert‎- ‎Huang Transform (H...

متن کامل

Comparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura

Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008